Learning domain structure through probabilistic policy reuse in reinforcement learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer Learning in Reinforcement Learning Problems Through Partial Policy Recycling

In this paper we investigate the relation between transfer learning in reinforcement learning with function approximation and supervised learning with concept drift. We present a new incremental relational regression tree algorithm that is capable of dealing with concept drift through tree restructuring and show that it enables a reinforcement learner, more precisely a Q-learner, to transfer kn...

متن کامل

Testing Probabilistic Equivalence Through Reinforcement Learning

We propose a new approach to verification of probabilistic processes for which the model may not be available. We use a technique from Reinforcement Learning to approximate how far apart two processes are by solving a Markov Decision Process. If two processes are equivalent, the algorithm will return zero, otherwise it will provide a number and a test that witness the non equivalence. We sugges...

متن کامل

Inverse Reinforcement Learning through Policy Gradient Minimization

Inverse Reinforcement Learning (IRL) deals with the problem of recovering the reward function optimized by an expert given a set of demonstrations of the expert’s policy. Most IRL algorithms need to repeatedly compute the optimal policy for different reward functions. This paper proposes a new IRL approach that allows to recover the reward function without the need of solving any “direct” RL pr...

متن کامل

Transfer Learning for Reinforcement Learning through Goal- and Policy Parametrization

Relational reinforcement learning has allowed results from reinforcement learning tasks to be re-used in other, closely related, tasks. This transfer of knowledge is made possible by the use of parameters in the representations of the task-description and the learned policy. In this paper, we will give a description of the current state of the art of transfer learning with relational reinforcem...

متن کامل

Transfer Learning for Reinforcement Learning through Goal and Policy Parameterization

Relational reinforcement learning has allowed results from reinforcement learning tasks to be re-used in other, closely related, tasks. This transfer of knowledge is made possible by the use of parameters in the representations of the task-description and the learned policy. In this paper, we will give a description of the current state of the art of transfer learning with relational reinforcem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress in Artificial Intelligence

سال: 2012

ISSN: 2192-6352,2192-6360

DOI: 10.1007/s13748-012-0026-6